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ABSTRACT

This paper studies a factorization-based gradient descent approach
for non-symmetric matrix completion. We introduce an objective
that includes an orthogonality regularization for one of the factors.
Additionally, we introduce a scaling term to ensure that the two fac-
tors are of equal magnitude to improve the convergence speed. For
the proposed objective, we analyze the exact linear convergence rate
of gradient descent via the asymptotically linear update equation for
the error matrix. Our proposed result is the first closed-form ex-
pression of the exact linear rate. To illustrate the correctness and
tightness of our analysis, we compare the empirical convergence
rate against the analytical rate. Additional numerical experiments
are done to verify the efficacy of the scaling approach.

1. INTRODUCTION

Matrix completion has numerous applications in machine learning
and signal processing, namely system identification [1], collabora-
tive filtering [2], and dimension reduction [3]. This problem can
be described as follows. Let M ∈ Rn×m be a rank r matrix with
1 ≤ r ≤ min(m,n), and Ω = {(i, j) | Mij is observed} be an in-
dex subset of cardinality s such that s ≤ mn. We wish to recover the
unobserved entries of M by solving a rank minimization problem,
subject to linear constraints consistent with the observations [4].

A body of work has been devoted to using first-order iterative
methods for low-rank matrix completion that enforce the low-rank
constraint using a factorization approach. By reparametrizing the
m × n matrix as the product of two smaller matrices M = AB⊤,
for A ∈ Rn×r and B ∈ Rm×r , the resulting equivalent prob-
lem is unconstrained and more computationally efficient to solve
[5]. Although this problem is non-convex, recent progress shows
that for such a problem any local minimum is also a global mini-
mum [6, 7]. Thus, basic optimization algorithms such as gradient
descent [6, 8, 9] and alternating minimization [10–13] can provably
solve matrix completion under a specific sampling regime. Existing
convergence analyses of algorithms for low-rank matrix completion
often rely on standard assumptions, such as the incoherence of the
underlying matrix M and the uniform randomness of the sampling
pattern Ω [4]. Under these assumptions and a sample complexity
bound on the number of observed entries s, linear convergence to
a global solution can be guaranteed (see [11] for alternating mini-
mization, [9] for factorization-based gradient descent, and [14] for
iterative hard thresholding), with an upper bound on the rate of con-
vergence ρ < 0.5.

In this paper, we present a gradient descent (GD) approach for
matrix completion that relies on the factorization of the matrix in the
form of AB⊤. To ensure the linear convergence of gradient descent,

we incorporate orthogonality constraints (up to a scaling factor) on
the left factor A. Our focus is on the theoretical analysis of the
asymptotic convergence rate. By exploiting the local structure of the
problem, we characterize the exact linear rate of local convergence
of the algorithm. The closed-form expression we obtained can be
used to determine sufficient conditions that ensure local linear con-
vergence. Moreover, since our expression is exact, one can identify
conditions that are potentially less stringent than existing conditions.
Similar to the previous work [15], we derive the asymptotically lin-
ear update equation for the error matrix and obtain the convergence
rate in terms of this matrix. As a sanity check, we conduct numeri-
cal experiments to illustrate the correctness of the formula. We apply
the algorithm to solve the matrix completion problem in a few sce-
narios and compare the empirical convergence rate against the ana-
lytic expression for the rate we derived. The agreement confirms our
derivation. While other upper bounds for the rate of convergence
of GD for matrix completion are available in the literature [6], the
expression for the rate provided in this paper is the first to provide
an exact prediction of the asymptotic rate of convergence of GD for
non-symmetric matrix completion.

Notation Throughout the paper, we use the notations ∥ · ∥F and
∥ · ∥2 to denote the Frobenius norm and the spectral norm of a ma-
trix, respectively. Occasionally, ∥ · ∥2 is used on a vector to denote
the Euclidean norm. Boldfaced symbols are reserved for vectors and
matrices, while the elements of a vector/matrix are unbold. In addi-
tion, In denotes the n × n identity matrix, and 0m×n denotes the
m × n matrix of all zeros. We also use ⊗ to denote the Kronecker
product between two matrices. For a matrix X ∈ Rm×n, Xij refers
to the (i, j) element of X . The spectral radius of X is the largest
absolute value of the eigenvalues of X , denoted by ρ(X). The nota-
tion vec(X) denotes the vectorization of X by stacking its columns
on top of one another.

2. PROBLEM FORMULATION

In this paper, we consider a GD approach to solving the problem of
low-rank matrix completion [6,9]. In the (noiseless) low-rank matrix
completion problem, the goal is to find a rank-r matrix X such that

Xij = Mij , (i, j) ∈ Ω. (1)

Here, X and M are m × n real-valued matrices and Ω is the
sampling pattern that is a subset of {1, . . . ,m} × {1, . . . , n}. A
factorization-based approach can be used to solve the aforemen-
tioned problem. Consider parameterizing X as X = AB⊤, where
A is m × r and B is n × r. This parameterization forces the rank
of X to be no more than r. Using this parametrization, one can



rephrase the low-rank matrix completion problem (in its noiseless
case) as the problem of finding an m × r A and an n × r B such
that (AB⊤)ij = Mij for (i, j) ∈ Ω. If we define the projection PΩ

such that

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω
0 (i, j) /∈ Ω

, (2)

then we can write the low-rank matrix completion problem as

PΩ(AB⊤−M) = 0. (3)

A simultaneous solution of all the equations in (3) is non-trivial. It is
common to construct an objective function that is minimized when
(3) holds. In [15], we analyzed the convergence of factorization-
based gradient descent for such an objective function in the case of
symmetric matrix completion. Adapting the convergence results for
symmetric matrix completion in [15], one needs to perform some
modification since the proposed matrix is not positive semi-definite
and using symmetric matrix completion of the form G = XX⊤

will not allow reducing the fitting error to zero. To remedy the
problem, semidefinite lifting [16] in which G = [A;B][A;B]⊤ =
[AA⊤,M ;M⊤,BB⊤] can be used, which in turn is compatible
with symmetric matrix completion. However, the challenge is this
method is not guaranteed to converge linearly due to ambiguity in
the solution (A,B). Moreover, a combination of semidefinite lifting
and the analysis in [15] yields a rate of 1, i.e., no linear convergence
guarantees. The following section presents a novel regularized ob-
jective for non-symmetric matrix completion and the details of the
gradient descent approach for minimizing such an objective.

2.1. A Gradient Descent Approach

To solve this problem efficiently in a large-scale setting, we consider
a gradient descent approach. Specifically, we consider the following
objective

f(A,B) =
1

2
∥PΩ(AB⊤−M)∥2F +

1

4
∥A⊤A− cIr∥2F , (4)

where1

c =

√
mn

r|Ω| ∥PΩ(M)∥F . (5)

Note that the first term of the objective can be minimized to zero,
by selecting A and B such that PΩ(AB⊤− M) = 0, as in the
low-rank matrix completion formulation in (3). The second term
in the objective is used to alleviate the ambiguity of the solution.
In particular, if the singular value decomposition of M is given by
M = UΣV ⊤where U is an m× r semi-orthogonal matrix, Σ is a
non-negative diagonal matrix of dimension r× r, and V is an n× r
semi-orthogonal matrix. Then, A and B that satisfy AB⊤ = M
are given by A = UG and B = V Σ(G−1)⊤ for any invertible
r × r matrix G. Minimizing the second term of the objective to
zero implies a solution for A of the form A =

√
cUQ where Q

is an orthogonal r × r matrix satisfying QQ⊤ = Q⊤Q = Ir . We
will show later, that this reduction of the ambiguity in the solution
can allow us to establish a linear rate convergence. Note that the
corresponding solution for B is given by B = 1√

c
V ΣQ. Using the

objective in (4), we can obtain the objective gradient with respect to

1This choice of c is aimed to ensure that ∥A∥F ≈ ∥B∥F . Due to space
limitations, we omit the proof.

Algorithm 1 Factorization-based Gradient Descent
Input: A0, B0, PΩ(M), η
Output: {Ak,Bk}

1: for k = 0, 1, 2, . . . do
2: Pk = PΩ(AkB

⊤
k −M)

3: Ak+1 = Ak − η
(
PkBk +Ak(A

⊤
kAk − cIr)

)
4: Bk+1 = Bk − ηP⊤

k Ak

A and B as follows:

df

dA
= PΩ(AB⊤−M)B +A(A⊤A− cIr)

df

dB
= PΩ(AB⊤−M)⊤A. (6)

Using the gradient, we can define the gradient descent iterations as:

Ak+1 = Ak − η[PkBk +Ak(A
⊤
kAk − cIr)]

Bk+1 = Bk − ηP⊤
k Ak, (7)

where Pk = PΩ(AkB
⊤
k − M) and η is the step-size parameter

satisfying η > 0 (see Algorithm 1).

3. CONVERGENCE ANALYSIS

Due to the ambiguity in the solution for A and B, instead of con-
sidering convergence of Ak and Bk to A and B respectively, we
consider the convergence of the product of matrices Ak and Bk

with matrices A⊤
k and B⊤

k . In particular, we define the concate-
nation of Ak and Bk as Gk = [A⊤

kB
⊤
k ]

⊤ and similarly the con-
catenation of A and B as G = [A⊤B⊤]⊤. We consider the con-
vergence of GkG

⊤
k to GG⊤. Note that in this approach, the limit

GG⊤ is well-defined since AA⊤, AB⊤, and BB⊤are all uniquely
defined. Specifically, we have AA⊤ = cUU⊤, AB⊤ = M , and
BB⊤= 1

c
V Σ2V ⊤= 1

c
M⊤M . Note that the ambiguous Q in the

solution for A and B cancels out in AA⊤, AB⊤, and BB⊤ and
hence in GG⊤. Additionally, it can be shown that Gk+1G

⊤
k+1 can

be expressed as a function of GkG
⊤
k . Hence, a recursion of the form

Gk+1G
⊤
k+1 = f(GkG

⊤
k) and a fixed point approach can be used

to facilitate the analysis. We start by stating the update equation on
the elements of GkG

⊤
k and proceed with the structural constraints

on GkG
⊤
k .

3.1. Update Equations

The update equations are obtained by taking the products of the ma-
trices in (7). Since our goal is to analyze the asymptotic behavior
of the GD iterations, we focus our analysis on the leading terms.
Specifically, if we denote GkG

⊤
k−GG⊤by Ek, then asymptotically

(when Ek → 0) terms that are O(∥Ek∥2) can be neglected. Hence,
we consider the following update equations and omit the O(∥Ek∥2)
from the RHS. Due to space limitations, intermediate calculations
are omitted and only key steps are provided.

Ak+1A
⊤
k+1 = AkA

⊤
k − η[PkBkA

⊤
k +AkB

⊤
kP

⊤
k

+2Ak(A
⊤
kAk − cIr)A

⊤
k ] (9)

Ak+1B
⊤
k+1 = AkB

⊤
k − η[PkBkB

⊤
k +AkA

⊤
kPk

+Ak(A
⊤
kAk − cIr)B

⊤
k ] (10)

B⊤
k+1B

⊤
k+1 = BkB

⊤
k − η[MP⊤

k AkB
⊤
k +BkA

⊤
kPk] (11)



H =


2cPA ⊗ PA (Im ⊗M)TSS⊤T⊤ (M ⊗ Im)SS⊤ 0m2×n2

Im ⊗M⊤ (Im ⊗BB⊤+ cPA ⊗ In)TSS⊤T⊤− cP⊥
A ⊗ In 0mn×mn 0mn×n2

M⊤⊗ Im 0mn×mn (BB⊤⊗ Im) + c(In ⊗ PA)SS⊤− cIn ⊗ P⊥
A 0mn×n2

0n2×m2 (M⊤⊗ In)TSS⊤T⊤ (In ⊗M⊤)SS⊤ 0n2×n2

 . (8)

Let Ek
AA = AkA

⊤
k − AA⊤, Ek

AB = AkB
⊤
k − AB⊤, Ek

BA =
BkA

⊤
k − BA⊤, and Ek

BB = BkB
⊤
k − BB⊤. We can substitute

the definition of the different Ek terms into (9)-(11) and remove
terms that are O(∥Ek∥2), simplify, and obtain update equations on
the error terms:

Ek+1
AA = Ek

AA − η[PkM
⊤+MP⊤

k + 2cPAE
k
AAPA]

Ek+1
AB = Ek

AB − η[PkBB⊤+ cPAPk +Ek
AAM − cP⊥

A Ek
AB ]

Ek+1
BB = Ek

BB − η[P⊤
k M +M⊤Pk]. (12)

Here, PA = A(A⊤A)−1A⊤ and PA
⊥ = Im − PA. Using these

updates, we can obtain an updated equation of the form

Ek+1 = f(Ek) +O(∥Ek∥2) where Ek =

[
Ek

AA Ek
AB

Ek
BA Ek

BB

]
and f(·) is a linear mapping f : E → E , where

E =

{
XX⊤−

[
AA⊤ AB⊤

BA⊤ BB⊤

]
| X ∈ R(m+n)×r

}
.

In other words, the space of all matrices can be written as the differ-
ence of two symmetric rank r (m+ n)× (m+ n) matrices. To ob-
tain the linear mapping as a matrix, we consider using the vectorized
version of E. This involves the vectorized form of the error compo-
nents, i.e., ek

aa = vec(Ek
AA), e

k
ab = vec(Ek

AB), e
k
ba = vec(Ek

BA),
and ek

bb = vec(Ek
BB). Using this notation, we can write the up-

date on the vectorized error terms by taking the vec operator on the
corresponding matrix equations in (12). This yields:

ek+1
aa = ek

aa − η[(M ⊗ Im)SS⊤ek
ab

+(Im ⊗M)TmnSS⊤T⊤
mne

k
ba + 2c(PA ⊗ PA)e

k
aa]

ek+1
ab = ek

ab − η[(BB⊤⊗ Im)SS⊤ek
ab + c(In ⊗ PA)SS⊤ek

ab

+(M⊤⊗ Im)ek
aa − c(In ⊗ P⊥

A )ek
ab]

ek+1
ba = ek

ba − η[(Im ⊗BB⊤)TmnSS⊤T⊤
mne

k
ba

+c(PA ⊗ In)TmnSS⊤T⊤
mne

k
ba + (Im ⊗M⊤)ek

aa

−c(P⊥
A ⊗ I)ek

ba]

ek+1
bb = ek

bb − η[(M⊤⊗ Im)TmnSS⊤T⊤
mne

k
ab

+(Im ⊗M⊤)SS⊤ek
ab]. (13)

Here Tmn is the permutation matrix satisfying Tmnvec(X) =
vec(X⊤) for all X ∈ Rm×n and S ∈ Rmn×s. In a matrix form,

ek+1
aa

ek+1
ba

ek+1
ab

ek+1
bb

 = (I(m+n)2 − ηH)


ek
aa

ek
ba

ek
ab

ek
bb

 , (14)

where H is given in (8). We can write the vec operator of the error
matrix Ek in terms of the vectorized error terms as

vec(Ek) = vec
([

Ek
AA Ek

AB

Ek
BA Ek

BB

])
= Z


ek
aa

ek
ba

ek
ab

ek
bb

 , (15)

where Z is a permutation matrix given by:

Z = diag(
[
Im ⊗

[
Im

0n×m

]
, Im ⊗

[
0m×n

In

]]
,[

In ⊗
[

Im
0n×m

]
, In ⊗

[
0m×n

In

]]
). (16)

Using equations (14) and (15), we can now write the update equation
for Ek as follows:

vec(Ek+1) = Z(I(m+n)2 − ηH)Z⊤vec(Ek). (17)

As mentioned in [15], the integration of structural constraints is a
necessary step in the analysis of the convergence behavior or the
error matrix. We proceed by characterizing the structural constraints.

3.2. Integrating Structural Constraints

Recall the definition of E the set of all error matrices. It can be
shown that a symmetry constraint and a rank r constraint can be
used to characterize the set E . The two constraints can be captured
as follows. For symmetry, we have E = (E+E⊤)/2. To satisfy the
rank constraint, we can consider the manifold of all rank r matrices,
Mr . The first-order term of the error matrix resides in the tangent
space TMr (GG⊤) and hence it satisfies:

E = E − P⊥
G EP⊥

G +O(∥E∥2).

See [15] for details. Vectorizing the two requirements, we can write
them as

vec(E) =
1

2
(I(m+n)2 + T(m+n)2)vec(E)

vec(E) = (I(m+n)2 − P⊥
G ⊗ P⊥

G )vec(E), (18)

where T is a commutation matrix such that T vec(E) = vec(E⊤).
Letting P1 = 1

2
(I(m+n)2 +T(m+n)2) and P2 = (I(m+n)2 −P⊥

G ⊗
P⊥

G ), we can write the projection on the intersection of two require-
ments as

P = P1P2 = P2P1. (19)

Following [15], this product P is also a projection. Hence, once
can locally characterize the tangent space of the symmetric rank r
(m+n)×(m+n) matrices at GG⊤using vec(E) = P vec(E). The
structural constraints can be incorporated into the update equation in
(17) as follows:

vec(Ek+1) = PZ(I(m+n)2 − ηH)Z⊤P vec(Ek). (20)

In other words, the structural constraints on Ek are applied before
and after the update. Since P is a projection matrix it can be written
as P = QQ⊤ where Q is an (m + n)2 × d orthogonal matrix and
d = r(2(m+n)+1−r)/2 is the rank of P that is also the dimension
of the manifold of all (m+n)×(m+n) symmetric rank-r matrices.
Using Q, we can write an economy version of the update equation:

Q⊤vec(Ek+1) = Q⊤Z(I(m+n)2 − ηH)Z⊤QQ⊤vec(Ek). (21)
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Fig. 1. (Left): a plot of the empirical error terms ∥Ek∥ (solid), ∥Ek
AB∥ (dash-dotted), and ρk (dashed) as a function of the number of iterations

for the 4 settings described in Section 4 using a blue curve for (ρs = 0.5, r = 2), red curves for (0.75, 2), yellow curves for (0.5, 3), and
purple curves for (0.75, 3). (Right): a plot of the empirical error terms ∥Ek∥ (solid), ∥Ek

AB∥ (dash-dotted), and ρk (dashed) as a function of
the number of iterations for the setting of n = 30, m = 20, r = 2, and ρs = 0.75 for 6 different values of c in {1, 10c∗, 3c∗, c∗, c∗/3, c∗/10}
corresponding to the blue, red, yellow, purple, green, and cyan, respectively.

Note that ∥Q⊤vec(Ek)∥ = ∥vec(Ek)∥ + O(∥vec(Ek)∥2) and
hence the asymptotic convergence rate of the error term Q⊤vec(Ek)
is the same the asymptotic convergence rate of the error term
vec(Ek). Finally, the convergence rate can be obtained as the spec-
tral radius of the matrix Q⊤Z(I(m+n)2 − ηH)Z⊤Q = Id − ηĤ ,
where Ĥ = Q⊤ZHZ⊤Q ∈ Rd×d.

3.3. Main Result

We conclude this section by formally stating our convergence rate
analysis in the following theorem.

Theorem 1. Let matrices P , Z, and H be as in (19), (16), and (8),
respectively. Additionally, the projection matrix P can be decom-
posed as P = QQ⊤ where Q is a (m + n)2 × d semi-orthogonal
matrix. Finally, define matrix Ĥ = Q⊤ZHZ⊤Q. If Ĥ is non-
singular, then Algorithm 1 produces a sequence of matrices AkB

⊤
k

converging to M at an asymptotic linear rate ρ(Id − ηĤ). For-
mally, there exists a neighborhood N (M) of M such that for any
A0B

⊤
0 ∈ N (M),

∥AkB
⊤
k −M∥F ≤ C∥A0B

⊤
0 ∥F ρ(Id − ηĤ)k, (22)

for some numerical constant C > 0.

4. NUMERICAL EXPERIMENTS

In this section, we conduct a numerical experiment to verify the va-
lidity of the theoretical analysis of the rate of convergence and to
assess the provided choice of the constant c in the algorithm.

4.1. Theoretical Rate Verification

To assess the validity of our analysis, we perform the following ex-
periment. We consider matrix completion for a 20 × 30 matrix
(m = 20 and n = 30) and four settings for (ρs, r), i.e., the pair (ratio
of known entries, rank): (0.5, 2), (0.75, 2), (0.5, 3), and (0.75, 3).
For each setting, we generate the factors A and B such that their
entries are i.i.d following the standard normal distribution. We then
select uniformly at random ⌈ρsmn⌉ of the matrix entries to be the

known set of entries. For each of the four settings, we run Algo-
rithm 1 with c as prescribed in (5) for 50, 000 iteration. We use a
small step size η = 0.0005 to make sure the linear convergence oc-
curs in all settings.2 We initialize Ak and Bk (at k = 0) such that
their entries are i.i.d following the standard normal distribution. At
each iteration, we compute ∥Ek

AB∥ and ∥Ek∥. In Fig. 1(Left), we
plot for each of the aforementioned settings, ∥Ek∥ (solid), ∥Ek

AB∥
(dash-dotted), and ρk (dashed), where ρ = ρ(I − ηĤ) is the the-
oretical rate given by Theorem 1, as a function of the number of
iterations k. We note that in each of the settings the rate at which
∥Ek

AB∥ and ∥Ek∥ decrease to zero matches the rate at which ρk

decreases to zero.

4.2. The Impact of c

Here, we study the impact of the choice of c. We select the setting of
m = 20, n = 30, ρs = 0.5, and r = 2. We generate a matrix using
the aforementioned data generation process and apply the GD with
the following values of c: {1, 10c∗, 3c∗, c∗c∗/3, c∗/10} where c∗ is
given in (5). In Fig. 1(Right), we plot for each value of c, the value
of ∥Ek∥ (solid), ∥Ek

AB∥ (dash-dotted), and ρk (dashed) as functions
of k. We observe that the choice of c = c∗ provides the fastest rate
among the 6 values of c. In particular, the case of c = 1 highlights
the challenge of using a GD with the same step size for the A and
B update when the two matrices are significantly different in terms
of their norms.

5. CONCLUSION

In this paper, we presented a variant of GD for matrix completion
that is based on parameterizing the matrix as a product of two fac-
tors, wherein the first factor is assumed to be a semi-orthogonal times
a constant. The GD algorithm provides a simultaneous update to
the two factors by minimizing an objective consisting of a fitting
term and a regularization term that ensures that the first factor is a
semi-orthogonal matrix (up to a scaling factor). A detailed analysis
was provided to establish conditions for linear convergence of the

2In each specific setting, one can choose an optimal step size by maxi-
mizing the rate ρ(Id − ηĤ) w.r.t. η > 0.



algorithm and a formula for the asymptotic linear rate was provided.
Additionally, a formula was provided to determine the scaling con-
stant for the semi-orthogonal factor. Numerical experiments were
conducted to verify the correctness of the linear rate expression and
to illustrate the merit of selecting the scaling constant. In contrast,
the proposed c∗ yields identical norms for A and B and appears to
produce the fastest rate of convergence.
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